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CHAPTER 1. INTRODUCTION 

This research is directed toward extensions of the classical fighter-bomber duel, 

i.e., a silent duel between a fighter capable of firing a single missile and a bomber 

capable of maintaining continuous fire. 

Duels have traditionally been categorized according to whether they are "silent" 

or "noisy." Noisy duels are called so, because the opponents are assumed to be 

instantaneously aware of the opponent's firing; as such, they are duels of high, if not 

"perfect" information. Silent duels are called so, because the opponents are assumed 

not to know (assuming, they survive) if or when the opponent has fired. 

The study of the noisy duel mostly has dealt with the case of a duel between 

agents each equipped v/ith a finite number of bullets. As such, it has served a number 

of purposes: 

(1) The discretized noisy duel has served as a vehicle for illustrating the algorithmic 

method appHcable to multi-stage games, as a means for obtaining a behavioral saddle 

point of a game of perfect recall [31!, [38!. 

(2) The discretized noisy duel and its asymptotic form has provided a stochastic 

representation of the "split-second anticipation" phenomenon ! lit that marks the 

continuous versions of such duels. 

(3) The continuous version of the noisy duel has served to illustrate the concept of 
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"e - good strategy" T . : 14i. [15;. 

The silent duel to be studied here leaves behind matters of informational struc­

ture - be it the "noise" that keeps the players of the discretized noisy duel continually 

aware of the opponent's past actions, or the supreme act of information gathering, 

i.e., split-second anticipation, required of the weaker player in the continuous noisy 

duel. But complexity of information structure and ease of algorithmic solution is 

now traded for a fairly complex solution in the context of an information structure 

involving no information gathering at all. 

The contribution of this research consists of the aiialy;is of saddle point coor­

dinate strategies for the Weiss-Gillman model (Chapter 3) and the Karlin model 

(Chapter 4) , a late duel start model with special structure (Chapter .5), a multiple 

missile model (Chapter 6), alternative payoff functions (Chapter 7), a non-zero sum 

version (Chapter 8). and a cooperative version (Chapter 9). 

Prior work in this area includes the work of Weiss ^4.51 who first examined the 

fighter-bomber duel, in the course of munition studies conducted at the Aberdeen 

Proving Ground. The work of Bellman and Blackwell [5; . and Blackwell and Shiff-

man i6' . and Gillman [IT! also is related to the optimal strategies for the fighter and 

bomber. The interpretation of this problem as an advertising competition was con­

sidered by Gillman 18: . Karlin 23 also has addressed this problem in advertising 

competition terms, but with a slightly different formulation. Further researches on 

duels have been done by many researchers (see. for example, i8l. i29i. 39 . and i400-

The organization of this dissertation is as follows: 

In Chapter 2 the classical fighter-bomber duel is described, including the relevant 

notation and assumptions, with the intent of extending this duel in the following 
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chapters. The classical case is that in which the fighter has one missile. The bomber 

has much small-caliber ammunition for protecting itself from the fighter. 

Chapter 3 deals with the Weiss-Gillman formulation of the classical fighter-

bomber duel. 

Chapter 4 deals with the Karlin formulation of the classical fighter-bomber duel. 

Chapter 5  studies the relation between two duel solutions corresponding respec­

tively to two related fighter "lethality functions." 

Chapter 6 deals with the duel in which the fighter possesses several identical 

missiles. 

Chapter 7 discusses the duel with certain alternative payoff functions such as a 

"fighter-perspective" payoff and "hybrid" payoff function. The latter deals with a 

payoff function that laixcs bumber-kill and fighter-survival probability. 

Chapter 8 deals with a non-zero sum version of the fighter-bomber duel. We 

find the attractive feature that equilibrium points and maximin points coincide. 

Chapter 9 deals with a cooperative bargaining view of the fighter-bomber duel, 

which may be especially relevant to Gillman's advertising competition formulation. 

Chapter 10 presents conclusions and recommendations for further research in 

related topics. 
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CHAPTER 2. CLASSICAL FIGHTER-BOMBER DUEL 

The Weiss-Gillman Model 

Consider a situation where a fighter. Player I. is attacking a bomber. Player IL 

The fighter is armed with one missile, possessing lethality function F{r) decreasing 

on 0. E], presumably from near 1 to near 0. The bomber is armed with a great weight 

(say, .4 ozs.) of armament, with lethality function p(r). also decreasing to near zero 

on lO.iî]. p{r) is to be thought of in these terms: When da ounces of ammunition 

are expended by the bomber at range r, there results the probability p{r)da that the 

fighter is killed. 

A strategy for the fighter is a cumulative distribution function <j(r) on ^c.R\ 

giving the probability distribution from which the fighter initially selects its firing 

range. A strategy for the bomber is the ammunition distribution density T{r) ac­

c o r d i n g  t o  w h i c h  t h e  b o m b e r  p l a n s  t o  d i s t r i b u t e  t h e  a m m u n i t i o n  s t o r e  A  o v e r  ; c ,  R l .  

with T{r)dr = da. the number of ounces da allotted to the range interval dr. satisfying 

r(r) dr < .4, where the minimum closing range c is not necessarily zero. 

The objective function M ( O - . T )  is taken to be the probability that the bomber 

is killed, when the fighter fires its missile with probability distribution cr(r), and the 
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bomber uses firing intensity function T ( r ) .  computed as 

M [ a . r )  =  J F { r ) e  ^  ( f a  

which is not an unreasonable assessment, since r(5)j)(5) d s  is the expected number 

of potential kills gotten off by the bomber up to range r. We initially make the 

assumption that there is a range tq < R such that 

In essence. Equation 2.1 guarantees that a certain natural bomber minimax 

strategy given below calls for rapid enough expenditure of ammunition to insure that 

t h e  a m o u n t  o f  a m m u n i t i o n  . 4  i s  e x p e n d e d  o n  [ c . R \ .  

The notation is summarized as follows: 

R :  Initial range for the duel. 

F { r ) :  The probability that fighter's missile, if fired at range r, is lethal to the 

b o m b e r ,  ( p o s i t i v e  a n d  n o n - i n c r e a s i n g  i n  r )  

p { r ) :  A function, positive and non-increasing in r. such that, when d a  ounces 

of ammunition are expended by the bomber at range r, there results the probability 

p{r)da that the fighter is killed. 

a - { r } :  Strategy for the fighter (probability that the fighter fires at a range less 

than or equal to r ). 

r(r): Strategy for the bomber (instantaneous firing intensity, in units of ozs./ft., 

such that, when the bomber employs r(r), there results a probability r(r)p(r)dr that 

t h e  f i g h t e r  i s  k i l l e d  b e t w e e n  r  a n d  r  —  d r ) .  

c :  Minimum closing range for the fighter and bomber. 

T { S ) P ( S )  d s :  Expected number of lethal shots gotten off by the bomber in 
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range ,r. R \ .  

g  J r  '  I  •  Probability that the fighter survi survives up to range r .  

The assumptions are as follows: 

a. R  >  t q .  

b. The fighter has a single missile available. 

c. The bomber can approximate continuous fire and has "A" amount of ammu­

nition. of which the bomber may spend all or some. 

d. The fighter does not know whether or not. or how much, the bomber has fired 

or is firing. 

e. There is no cumulation of damage, and statistical independence of bomber 

shots. 

f. Kill probability does not decrease with closing range. 

g. Weapon velocity is infinite. 

h. The only premium of the duel is bomber kill. 

i. Both parties are aware of the duel parameters p ( r ) ,  F { r ) .  R .  and .4. 

Weiss !45i and Gillman :18! examined the model which we described above. A 

saddle point for the duel is as follows: 

The optimal strategy for the fighter is 

for c < r < ro: 

The optimal strategy for the bomber is 

for c < r < ro, 

for T Q  <  r  <  R .  
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If both opponents adopt the optimal strategies, the probability of bomber destruction 

is F{TO): That is. 

The Karlin Model 

Karlin 23 : also has addressed essentially this problem as an advertising battle. 

Consider a competition between two businessmen. Mr. Big (bomber) and Mr. Little 

(fighter). Mr. Big is prosperous and has a stable supply of customers: Mr. Little 

is on the verge of bankruptcy. Now at time 0 a potential customer arrives on the 

scene. He may decide not to buy at all, but if he does buy he will place a large order 

with only one of the concerns. The order is sufficiently large to put Mr. Little back 

on his feet, but to remain in business Mr. Little must obtain the order by a certain 

time - call it time 1. Mr. Little wins if he secures the customer within the allotted 

time: Mr. Big wins if the customer does not buy or. a fortiori, if Mr. Big receives 

the order. By proper interpretation of the utility objectives of the participants the 

game is zero-sum [23]. 

The assumptions for this model are as following; 

(1) Only Mr. Big or Mr. Little can win the order, and "sales pitch" will be the 

decisive factor in determining the customer's decision. 

(2) The customer's resistance to buying decreases with time. 

(3) The customer's psychology is such that only the current sales effort exerts any 

influence on him. 

(4) Mr. Big is able to apply continuous sales pressure, while Mr. Little can mount 

only a single attempt. 
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We formulate the campaign in a mathematically continuous manner. Mr. Little 

selects a time t in 0.11 at which to try to convince the customer, while Mr. Big 

selects a rate r{t) of badgering the customer which is subject to the restrictions 

where the first of these two conditions differentiates Karlin's formulation from that 

of Weiss-Gillman and where 8 is related to the money Mr. Big has allotted to his 

campaign: i.e., if Mr. Big is spending at rate r(i). then the money will last for the 

time interval 1 ,23'. 

There are "customer susceptibility" functions F { t )  and p { t ) .  respectively for 

Mr. Little and Mr. Big. that are non-decreasing in time. Specifically. F\t) is the 

probability that Mr. Little will make the sale at time t if he chooses to approach the 

customer at that time: on the other hand p[t] is such that an expenditure of da by 

Mr. Big at time t. results in a probability of •p{t)da that the customer will succumb 

to Mr. Big. The times 0 and 1 are defined as starting and ending time for the sales 

competition, respectively. 

The objective function (as seen by Mr. Little) is as follows, with randomized 

strategy a{t) for Mr. Little: 

0 < T ( ( )  <  L 

I 
1 

r { t )  d t  =  S  <  I .  

The solution given below applies only when 

23!. 

is strictly decreasing in time t  
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Define the following quantities and function: 

F ' i t )  

a = min{x : ———-—- > 1}. 
F [ x ] p ( x ]  

•1 

S o  =  J  w [ t )  d t .  

S  = j w { t ) d t .  

The solution of the sales competition now is described by Karlin ,23 . as follows, 

in terms of the quantities u'(f). e. and d. He considers three cases: 

When S o  >  S .  e  <  d .  

the optimal strategy for Mr. Little (fighter) is 

0 for 0 < i < c?, 

1 - for c? < i < 1. 

1 for i = 1; 

the optimal strategy for Mr. Big (bomber) is 

T^(f): 
0 for 0 < ^ < e. 

w { t )  for e  <  t  <  1 .  

When S o  >  S .  d  <  € .  

the optimal strategy for Mr. Little (fighter) is 

0 

1 -
P(e) 

for 0 < i < e. 

for e < i < i. 
P i i )  

1 for i = 1: 
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the optimal strategy for Mr. Big (bomber) is 

0 for 0 < i < e. 

u ' ( t )  { o T  e  <  t  <  1. 

When (5o = (5. e = 0. 

the optimal strategy for Mr. Little (fighter) is a degenerate distribution 

concentrating a.t t = d : 

the optimal strategy for Mr. Big (bomber) is any r'^(() such that 

r''(0 = l (0<(<d). 

[  T ' ^ { t ) d t  =  S .  
Jo 

F ' i t )  
If is not monotonie, the optimal strategy for Mr. Big consists of inter­

vals in which T°(r) = u ' { t )  alternating with intervals in which = 0. 
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CHAPTER 3. ANALYSIS OF THE WEISS-GILLMAN MODEL 

Introductory Remarks 

This chapter deals with the optimal strategies suggested by Weiss-Gillman for 

the fighter and bomber. We re-derive these solutions, using the so-called constancy-

positivity principle, as well as the Lagrangian saddle point approach to constrained 

optimization. Both the constancy-positivity principle and Lagrangian saddle point 

approach are in their infinite-dimensional versions. In particular, we shall first see 

how the bomber's optimal strategy is suggested by the constancy-positivity principle, 

and then a sense in which the optimization problem involved in establishing a saddle 

point solution touches on Lagrangian optimization. 

In this chapter we assume that the fighter and bomber open fire at the same range 

R which is at least as large as the range in accordance with the previous chapter, 

and the quantity p{R) > 0, and FiR) > 0. The first two section below establish 

candidate saddle point coordinate strategies and r^, under the assumption that 

r" is derivable by the constancy-positivity principle. The third section below then 

verifies that the candidate strategies and do indeed constitute a saddle point 

for the game in which the duel starts at range R. The fourth section suggests a saddle 

point coordinate strategy for the fighter with altered restriction on the bomber. The 

last section shows saddle point coordinate strategies for a late duel start model with 
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1  " "  

Figure 3.1: Step Function 

initial burst possibility for the bomber. 

We will need to consider strategies for the fighter that are cumulative distribution 

functions possessing both discrete and absolutely continuous parts. 

Purely discrete cumulative distribution functions are step functions which are 

shown in Figure 3.1 indicating that the random variable being described takes on 

only a "countable" set of values, and each of them with a certain specified proba­

bility. Examples are the Poisson or the binomial cumulative distribution function. 

Average or expectation of sin.Y. X Poisson, is given by 

Purely absolutely continuous cumulative distribution functions are smooth functions 

which are shown in Figure 3.2 indicating that the random variable being described 

is capable of taking on a continuum of values, with any interval assigned probability 

given by the definite integral of a density function over that interval. An example 

1 is the normal cumulative distribution function, with the familiar densitv —=e / . 
'  V  2 -

Averages or expectations with respect to such cumulative distribution functions are 
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1 

Figure 3.2: Absolute-Continuous Distribution Function 

expressed as integrals involving the density. Thus the expectation of sin A'. X normal, 

is given by 

We shall need to deal with cumulative distribution functions a that are partly 

discrete and partly absolutely continuous. Such cumulative distribution functions 

may be thought of in at least these two ways: 

As a cumulative distribution function with both steps and smooth portions which 

can be shown in Figure 3.3. Or. in more explicit fashion, as a cumulative distribu­

tion function equal to a weighted average 

of a discrete cumulative distribution function which can be seen in Figure 3.4. 

and an absolutely continuous cumulative distribution function crac{t) which can be 

Averages or expectations with respect to such cumulative distribution functions 

are expressed as integrals with density (1 - 0)g{t) = g{t) . plus summations. Thus 

9 

c r { t ]  =  S a ^ ( t )  -r (1 - 6 ] a a c { t )  

described in Figure 3.5. with density function, namely. g { t ) .  
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f ]  P 2  P 2 l  

Figure 3.3; CDF with Steps and Smooth Portions 

1 " 

I 

m 

Figure 3.4: Discrete Distribution Function 

1 

Figure 3.5: Continuous Distribution Function 
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the expectation of sin A', X distributed as in Figure 3.3. is given by 

/_ 
— oo 3 

( s i n ( t ) ) ( g { t ) )  d t  -  ̂( s i n ( p ^ - ) ) ( A ^ - ) .  
— oo 2 = 1 

Such expectations commonly are given the Stieltjes integral designation, say 

Candidate Optimal Bomber Strategy by Constancy-Positivity Principle 

In this section we will see how the bomber's optimal strategy is suggested 

by the constancy-positivity principle. 

We begin by recalling what is meant by a positive mixed strategy. When a 

matrix game is stochastically extended with respect to at least one of the players: 

i.e., whenever one of the players' strategies are in fact mixtures of available pure 

strategies, then a mixed strategy for that player is said to be positive if it puts mass 

on all of the player's pure strategies. Thus, when the player, say the fighter, has 

a finite number of pure strategies, say (jj, <72, • • •, (Tj, • • •. cttti- as the fighter would 

in a finite version of the duel, then the fighter's strategy is positive if exceeds 

zero for all i. i = 1,2, • • •. m. Analogously, when the fighter has a continuum of pure 

strategies, as in the case of the duel studied in this thesis, then a mixed strategy for 

the fighter, as given by a cumulative distribution function o-{p) on Ic. R . is said to be 

positive if no non-degenerate sub-interval of [c, Rj is assigned zero probability under 

cr. 

sin(f) d c r ( t )  

We also note that . when c r { t )  =  0  for ( < 0. then 

J d a { t )  for any r > 0 
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When a game is stochastically extended with respect to one of the players, say 

with respect to the fighter, by the introduction of mixed strategies as above, and 

the fighter possesses a positive saddle point coordinate strategy, say (TQ , then any 

saddle point coordinate strategy TQ attains the saddle point payoff v in the presence 

of all (pure or mixed) strategies for the fighter if, with r indexing the fighter's pure 

strategies, M{r.To) is continuous in r. This is shown by noting first that, if ) is 

non-positive and continuous. 

J g i r )  (I O -'Q (r) = Oj implies g [ r )  = Oi. (3.1) 

Then [ M { a J  . T q )  - r = 0 implies [ J  M  [ t . T o )  d a ' ^  [ r ]  -  f  v  d c r ^ i r )  =  0] implies 

[ f  ' M ( r .  T o )  -  v ]  d a ' g  ( r )  =  0 ;  .  w h i c h  i m p l i e s  t h a t  M ( r ,  r ^ )  -  r  = 0  b y  s e t t i n g  g( r ]  =  

M{r,To) — V in Equation 3.1. 

At any rate. then, if the fighter does possess a positive saddle point coordinate 

strategy, then, given the required continuity, it must be that any TQ will satisfy 

M [ T , T O )  =  V ,  VV, (3.2) 

which should allow us to compute a candidate T Q . This feature motivates us to start 

looking for a saddle point (uot'o) by searching for a TQ satisfying Equation 3.2. If 

that search is successful, CTO is then hunted down by looking for a A such that TQ 

minimizes M in the presence of (t: i.e., a a such that 

M [ a . T o )  <  M { ( 7 , r ) ,  Vr. (3.3) 

If the search for a  satisfying Equation 3.3 also is successful, and leads, say. \ o  a  —  a o -

then (cTo-To) is established as a saddle point, since we already have by Equation 3.2 

that 

M { < 7 o , r o )  =  M [ c r . T o ) ,  Vcr. 
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In the situation at hand (restricting r to the interval [c.ro\. with the hope that things 

will fall into place by themselves on iro-i?;). relation Equation 3.2 gives 

In F { r )  -  p [ s ) T o { s ) d s  = In r 

~p{r)To{r) = 0 

"  f ( r ) X r )  -

We now define a candidate t q  by extending t q  to ;c. Ri by postulating that T o ( r )  = 0, 

To < r < R. and apply Lagrangian saddle point methods to finding a ao such that 

M [ c r o .  T o )  <  M ( a o . r ) .  

Optimal Fighter Strategy by Lagrangian Saddle Point 

In this section we will discuss how the fighter's optimal strategy (cr°(7-)) is derived 

using Lagrangian saddle point methods. 

Our task is to find a a such that 

M { a . r )  —  M { a , T o )  > 0. 

In other words, among the problems Per 

M  i n  

r  s.t. T(i) d x  < .4 

r > 0 on i c, i? i 

parametrized by cr. find one, say for which is the minimizing r; 

Mzn (3.4) 
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- s.t. J ^ r ( x ) d x  < .4 

r > 0 on c. i? 

But the Lagrangian saddle point theory alerts us to the fact that it is sufficient for 

Equation 3.4 that participate in a saddle point of the Lagrangian L(\.T) for the 

minimization problem P^o • i.e.. that there be a Aq > 0 such that (Ao,r°) is a saddle 

point of 

. 
L ( \ . r )  =  M [ a ° .  r )  —  X i  J  r ( x )  d x  -  -4:. 

for all A > 0 and r > 0 on ic. R \ .  

Thus (7^ will satisfy Equation 3.4 if there is a Ao > 0 such that 

. 
M {cr°.T )  — XQ  J  r { x ) d x  -  A '  

= J  [ F ( r ) €  \ d a ' ^ [ r )  ^  Xo'j  T { X )  d x  -  A \  

t R  
>  M [ o - ° . r ° )  —  \ o [  j  T ° { x ) d x  —  A \  (3.5) 

H f (r)e- ^ T^(z) (fz - .4: 
J c  J  c  

> - .4|. 

for all A > 0 and r > 0 on ;c, i ? i .  But, since 

J  r°(z) d x  = .4, 

the second inequality is automatically satisfied with equality. 

We can change the order of integration when Stieltjes integration is involved. 

As expected from the usual calculus, for non-negative A(.) and B(.) we have 

[ • R  f R  r R  t x  
/  B { r )  /  A { x ) d x d a { r ) =  / .4(z) / B { r )  d c r { r ) d x .  

J r = c  J x = r  J x = c  J r = c  
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> 1 - z. 

e - -o _ 1 > ~ 0 ]  

g-- _ e--o > _ zo)e--o_ 

(3.6) 

>  -  y  \ F [ T ) e ~  a o ( ^ ] d s  ~ - J  { a { x )  -  a o { x ) )  d x \  d a { r )  

=  - J  { a ( x }  -  a o { x ) ) [ J  F { r ) e  d a i r y  d x .  

where 5( r ) = F( r )e ^ ao(5) .4(r) = (a(z) — ao(z)). 

Equation 3.6 yields the following equations when c r { r )  —  c r ° { r ) .  and a o ( x )  = 

p{x)r°{x), a(x) — p(x)-(r). with'r( j) > 0 an arbitrary firing schedule for the bomber 

over .c.Ri, with J^T{x)dx < .4. 

J  > F { r ) e  (/cr^(r) — Agi^ T ( X )  d x  —  A ,  

- F ( r ) e -  ̂  X ^ ) T ° ( 6 )  ( f 6  ^  A o i  c f z  -  . 4 ]  

>  J  '-r(x) — r''(i ) J i —p(x) J  F(r)e d < 7 ^ { r ) , d x  

l-R 
- A O L T ( X )  -  T ° { x ) ] d x  

=  J  [ T ( X )  —  r ' ^ { x ) \ [ — p { x )  J  F ( r ) e  d c r ' ^ ( r )  

— Aqid x .  (3.7 
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where, for later reference, we define 

C ( x )  =  — p ( x )  J  F ( r ) e  P i ^ ) '  d ( T ^ ( r )  ~  X o -

Now we will examine the right hand side of Equation 3.7. The inequality of 

Equation 3.0 will be ensured by any and XQ reducing C(x) to a function equal to 

zero on \c,ro\ and greater than zero on rg. R\: say, 

P(ro) 
, o ,  , ^ l  P i . )  

1 on ro,R . 

and 

Xo — X'^ = F(ro)p[ro) 2 0. 

since, with XQ  = A°. and repeating in part computations already done above. C(x) 

b e c o m e s ,  f o r  x  <  T Q .  

C ( x )  =  — p ( x )  J  F ( r ) e  d ( T ° { r )  ~  X ' ^  

=  - p { x )  f d a ° { r )  -

=  - p { x ) F { r o ) c r ° [ x )  -  F { r o ) p { r o )  

= - p { ^ ) F { r o ) ' ^ ^ ^ ] - F { r o ) p { r o )  

= - F { t o ) P { T O )  -  F { T O ) P { T O )  =  

and, for x  >  T Q -

C { x  

-p(i) f(r)e-^ 
J  T o  

= f (r)e- /r 
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= - p { ^ ) F { r o ) a ° { r o )  ~  

= - F { r o ) j ) { T o )  -  F { r o ) i p { r o ]  >  

Since C'(.r) is greater than or equal to zero, the right-hand side of Equation 3.7 is 

greater than or equal to zero. Therefore, the fighter's optimal strategy is found 

such that 

> 0. (3.8) 

Verification of Candidate Bomber Strategy 

It remains to verify that the extended bomber strategy does in fact satisfy. 

To this end note that 

r 
F'' 

' c  

where d c r ' ^ { r )  —  1. 

F { T ]  

=  F { r o )  J  d a -  ( r )  

=  F ( r o ) .  
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J r o  

r o  . F i r n ) .  r - R  
=  /  F { r ) [  : d a { r )  - / F ( r ) d a { r )  

J c  J T Q  

< F i ro )  [  d o - { r )  ~ F i ro )  f  d a { r )  
J c  J T Q  

=  F { r o ] ( j { R )  <  F { t o )  =  M { c r ° . T ° ) .  

where the last equality follows from a'^{ro) = 1. 

Therefore. > M { ( T . T ° ) .  which, together with relation of Equation 3.8. 

V( verifies that a and r are the saddle point coordinate strategies for the fighter and 

bomber respectively. 

Early Duel Start, with Altered Restriction on the Bomber 

Consider any 5 with c  <  s  <  F Q .  Suppose that the set of allowed strategies r{r) 

for the bomber satisfy only the condition. 

I ' R  f R  
J  T ( r ) d r  <  J  T ° [ r ) d r :  

i.e., that the bomber spend no more than the optimal amount in some early stage of 

the duel. Then a saddle point of the duel is given by the pair (<7°, r°). where 

0 for c  <  r  <  s .  

p(r, 

1 for r > ro. 



www.manaraa.com

23 

and 

I WW) 

0 for r > To-

To verify that < .M{a^we can proceed as in the case of the classical 

fighter-bomber duel. 

As to verifying that M{ag.T) > we proceed as follows: 

From Equation 3.6. 

= - j  ( a { x )  ~  a o { x ) ) [ J  F{ r ) e ' ~  -fr '  d c r ^ i r )  d x .  (3.9) 

where a o ( x )  = P { X ) T ' ^ ( X )  and a { x )  =  p(x)r(x). with r { x )  an arbitrary firing schedule 

fo r  t he  bomber  ove r  c.R]. 
To begin with, for x  >  T Q .  

= A' 'F(r)e-

=  F { r o )  J  d c r ° ( r )  =  F ( r o ) .  

And also, for c  <  x  <  V Q .  
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And so. 

= - I"" F(r)£-/r" 

= [ F(r)e D A Î { T )  

"  F i r ) [ ^ p l ] J 4 ( r )  

^ i ^ o )  J  d o - ^ { r )  =  F { r o ) c r g { x ) .  

'R  f x  c -R  J . a ( x ]  —  a o ( x ) '  j  F ( r ) e  d a ° [ r ]  d x  

= J a { x )  -  a o { x \ \ _  j  F { T ) e  • ^ r  d a ° [ r ) .  d x  

—  f  [ a { x )  —  a o ( x ) \ [  f  F { r ) e  d ( 7 g { r ) [  d x  
J r o  J c  

fro. .. ^ 
=  /  [ a { x )  -  a o { x ) ' [ F [ r o ] ( 7 s { x ) \ d x  

—  /  \ a { x )  —  a o { x ) \ [ F { T o ) \ d x  (3.10) 
J r o '  

= j  O d x -J [ a ( x )  -  a o { x ) ] [ F { r o ) a - s { x ) ] d x  

- /  [ a i x )  -  a o ( x ) \ [ F { r o ) ] d x  
Jto 

<  [  • a [ x )  -  a o { x ) Â F { r o ) ? ^ ^ ^ \ d x  
Vj fiz) 

— f  la( .T) -  ao(a-)i iF(ro)^y-^l  ix  
J T Q  P { ^ )  

where this last inequality is due to the fact that la(z) — a o { x ) \  is non-negative on 

[to, i?], 

=  J  [ T { X )  -  T ° { x ) \ \ F { r o ) p { r o ) \ d x  
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[•R rR 
=  [ F { r o ) p i r o ) ] [ j  T { x ) d x - J  T ' ^ { x ) d x ] < 0 .  

Hence, the right hand side of Equation 3.9 is greater than or equal to zero. 

That in fact shows that 

Therefore, uf and are the saddle point coordinate strategies for the fighter 

and bomber respectively for our modified model. 

Late Duel Start, with Initial Burst Possibility for the Bomber 

As in earlier sections, let A and be defined by 

A 

We now suppose that the duel begins at a range We also suppose that the 

bomber is capable of one ammunition burst at the range and that the fighter 

needs to survive any such initial burst at the range Ri to execute any planned missile 

release at the range R-^. 

Define 

_ fo -f'(r) , 

Jr i  F ( r j p l r )  

The objective function for this model is as follows: 

. 1 / ( ^ . 7 ) =  /  ^  F l r k -I'  

where a  —  T ( r ) d r .  T o  

1 
Then we show below that the saddle point coordinate strategies are the natural 



www.manaraa.com

26 

ones that so-to-speak make up for lost time at the range Ri: 

I 1 for r = 

and ^ 

I Û Q  for r  =  R ^ .  

As to verifying that > M{cr'^.T'^). we proceed as follows: 

From Equation 3.6. 

'c 
•i?l _ R - R l  o  

F(r)e-Jr 
J c  

>  ^  T ° i s ) p { s ) d s - p { R i ) a o -

r R ]  
[  { T ( X ) P { X }  -  r ° { x ) p { x ) ) d x  ̂  { A  -  A O ) p { R i ) \ d a  (r) 
J  r  

=  — a  J  ^  [ T { X ) P { X )  —  T ' ^ ( X ) P { X ) ^ ' _ J  F ( r ) e  ( f z  

-a(a - ao)X^l )iF(r)e- (3.11) 

where a = (-^1 

F o r  c  <  X  <  R i .  

r-r r ^ l  

' C  
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Also. 

= F { R i  )<T°(z). 

f(r)e-

=  /  F ( r ) e  )  d c r ' ^ { T )  

= /'^^F(r)i:^^i(f(T°(r) 
F [ r  

c  
= F{R i )  j  ^  d a  

= f(Ai). 

Hence the right hand side of Equation 3.11 equals. 

' R  f U i  
- Q  Y  [ T { X ] P ( X )  -  ' r ° { x ) p { x ) ] [ F { R i ) a ' ^ { x ) ]  d x  —  [ A ( a  -  a o ) p ( R l ] F (  R - ^  ) i  

=  - a { y  ^ i T ( z ) p ( z )  -  T " ( z ) p ( x ) ! i F ( J ? ] ^ ) ^ ^ ]  d x  -  i ( a  -  a o ) p ( i ? i  ) F ( R i ) ] }  

f R i  f R i  
-  a F { R i ) p { R i ) [ j  r ° { x ) d x - J  T { X )  d x  ~  { a o  -  a ) ]  

=  a F { R i ) p { R i ) [ { A  -  a o )  -  [ A '  -  a )  ~  { a o  ~  a ) ]  

= a/'(i?2)p(-Rl)i-4 - .4'] > 0 
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where .4 is the total amount of ammunition used under T°(r) and .4' is the total 

amount of ammunition used under the arbitrary firing schedule r(r) for the bomber. 

That in fact shows that 

> 0. 

It remains to show that 

To this end note that 

'^1 _ . 
—  a  J  F ( r ) e  d a ° [ r )  

' R l  
= aF(i?i ) I  d a  ,o ,  r  

= a F { R i ) .  

w h e r e  da'^(r) = 1. and 

I  c  

R l  
f(r)e <f<7( r | = " h  

=  a  F [ r ) [ ^ ^ ] d , T { r )  
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/•i?l 
=  a F { R i )  /  d a { r }  

=  a F ( R i ) a ( R i ) .  

Then. 

= - cr(it2)) > 0. 

since < 1. 

H e n c e ,  

Therefore, (r° and r'^ are the saddle point coordinate strategies for the fighter 

and bomber respectively when the duel starts at a range Ri less than the range r^. 
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CHAPTER 4. ANALYSIS OF THE KARLIN MODEL 

Introductory Remarks 

This chapter examines the optimal strategies suggested by Kariin ;23i for the 

fighter and bomber, under Karlin's chief distinguishing assumption that the bomber's 

firing rate is bounded. Also, we will use the notation for the Weiss-Gillman model 

in this chapter. We assume with Kariin that F ( r )  and p ( r )  decrease with range, and 

- F ' i r )  
that -rj=r,—- , . is strictly increasing on range r and the minimum closing range c is F { T ) p [ r )  . 0 0  0 0  

equal to zero. Finally, we work with the assumption of the fourth section of Chapter 

3, under which. 

Early Duel Start, with Altered Restriction on the Bomber 

Consider any 6 with c  <  s  <  r p .  Suppose that the set of allowed strategies r(r) 

for the bomber satisfy the above condition. 

Let us define the following quantity and functions: 

w { r )  

d  

min{l 

min{x 
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I 1 
w {  r )  d r  =  S o  =  ê .  

When 8 0  =  S .  c  <  d .  

a saddle point coordinate strategy for the fighter is 

/ 

0 for 0 < r < 5. 

f o r 5 < r <  for s < r < ro. 

1 for r > TQ -. 

a saddle point coordinate strategy for the bomber is 

0 for r > To-

u'(r) for 0 < r < r, 

When è o  =  8 .  ^  <  T o  <  d .  we can prove this in the same way as for the Weiss-

Gillman model. 

Now suppose that Q  <  d  <  T Q -  We verify that > M { c r g , T ' ^ ) .  using 

Equation 3.6, as follows: 

where a o { x )  =  p { x ) T ° { x )  and a(x) = p(z)T(z). with r  an arbitrary firing schedule 

f o r  t h e  b o m b e r  o v e r  [ c .  R \ .  

We will show that M(ag,r) > M[ag.T^), by showing that Equation 4.1 is greater 

than or equal to zero. 

To begin with, for x  >  T Q ,  

(4.1) 
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r d  v,_ r^o 
£ ° F ( r , e - - f '  

f \ i 4 [ r ) - [ °  

F ' i s ]  

= F { r o )  / d?c(r) = F(ro), 
T o  

J  S  

since JJ" d a g [ r )  = 1. Note that 0 < T { r )  < 1 by assumption of the Karlin model. 

And for 0 < X < To, 

F { r  
1 0  

[ \ i a i ( r ) -  r F { T ) r S r ° V ' . ' > ) ^ ° i ' ) i U a i { r )  
J O J  S  

F(r)e d a ° { r )  
I S  

F ( r o )  j  d a g { r )  =  f ( r o ) ( T ° ( z ) .  

And so. 

[ a { x )  -  a o { x ) ] [ J ^  F { r ) e  ^  d c T g i r ) ]  d x  

j  ' \ a { x )  -  a o [ x ) ] [  [  F ( r ) e ~ ^ r  c / c r ^ ( r ) ]  
Jo Jo  
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J  T o  ' / O  

r o  f R .  
< / :a(r)-ao(z)lF(ro)(T°(z):(fr-r/ ia(z)-ao(:;),:^(ro)iC^r 

J o  J  T o  

=  [  O d x -  [  a ( x )  -  a o { x ) ] [ F { r o ) a - g ( : : ) ] d x  f  ^ _ a { x )  -  a o i x ) ' [ F { r o ) ]  d x  
J o  J s  J t q  

<  [  ' a ( x )  -  a o ( x ) ' ' F { r o ) ^ ^ Ç ^ ' d x  -  [  [ a i x )  -  a o ( x ) ] [ F { r o ) ^ ^ ^ ]  d x  
Va '  P(z) Vro P(z) 

= f [ T ( X )  -  T ° { x)]'F { r o ) p { r o ) ] d x  ~  f T ( X )  -  r ' ^ ( x ) ] [ F i r o ) p i r o ) ]  d x  
J  s  J r o  

/•i? rR 
=  [ F { r o ) p ( r o y ' J  T ( x ) d x  -  J  T ° ( z ) d z i < 0 .  

Hence, the quantity of Equation 4.1 is greater than or equal to zero. That in fact 

proves that 

> 0. 

It remains to show that 

To be%in with. 

= / F( 
•i? T^(s)p(6)j3 

'0 

Jo 

F[r)è^' Sd° iai ir)  
1 0  

Odag{r)^ f F(r)poel-^^ 
l O  J s  

F { r ) p o [ ^ ; ^ ] d ( r g ( r )  
'  s  • F i r ]  
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= F{d)po j dagir) 
= F\d)po. 

where j?o = e p { s ) d s ^  and d c r g ( r )  —  1. 

Then. 

VO 

Jo 

=  F { r W - ^ '  ^ ' ' " • e -  d < , ( r )  JO 

f R  - F{d)po / dcr(r) 
Jo 

= F{d )poa- (R )  <  F{d )po  =  M{a-g ,T ' ^ ) .  

Therefore. M(cr^, T°) > M{cr. -^), and uf and r° are the saddle point coordinate 

strategies for the fighter and bomber for the Karlin model. 
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CHAPTER 5. LATE DUEL START WITH SPECIAL STRUCTURE 

Integer Relationship between F { r )  and G i r ]  

This section derives a saddle point coordinate strategy for a late-start duel with 

special structure, for which an initial bomber firing burst is not allowed. 

Suppose that there is a non-increasing differentiable positive function Gir) < 1 

such that the fighter lethality function F{r) has form 

with m  an integer, and such that the duel begins at range r g .  where r g  is defined by 

fg -G'(r) _ 

J c  G ( r ) p ( r ]  

We first study the relation between rg and ro defined by 

A F(r)p(r) 

Indeed, we show that rg < rg (which relation explains why we see this section 

as treating "late start"). 

When m  = 2. F { r )  = 1 — (1 - G(r))" and F ' ( r )  =  2 G ' { r ) ( l  —  G { r ) ) .  Hence, 

- F ' j r )  - G ' j r )  

F { r ) p ( r )  G { r ) p { r )  

1 .-f'jr) , (?V)^ 

p { r )  •  F ( r )  '  G { r )  '  
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1 ^._2G.''(r)(l-G(r)) 

'p(r)'- G(r)(2-G(r)) G(r)' 
1 

'  p ( r ) G { r ) ( 2  -  G { r ) )  

GV)G(r) 

;:-2G'(r)(l - G(r)) - G''(r)(2 -

0. 
P(r)(l - (1 - G { r ) ) ' ^ )  

since G ' ( r )  <  0, (?(r) > 0, and 1 — (1 — G { r ) )  >  0. 

Therefore. < 777^-^7^- so that rn < TQ  for m = 2. 
f(r)p(rj - G(r)p(r) 6/ -  ^ 

For m  > 2, we focus attention on the term, 

where F { T )  = 1 — (1 — G { R ) Y ^ .  m  —  Z A .  -  •  •  . k .  The following results are obtained; 

m = 3 : 

~ + G { r ) '  
1 - (1 - G(r))': 

^ G(r): 
1 - (1 - &(r))-* 

^1'-) = (r-TTTT^IKi - û'(>-))!4(i - C(r))-
1 - (1 - G'(r))-3 

^3(2-G(r))if G(r)i 

m = 6 : 

= (1 - 4(1 - G'(r))2 
1 - (1 - G(r))o 

^3(2-G(r))i4G(r)] 

m = 4 : 

m  =  0  :  
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m = / 

m  k  :  

- G(r))'^ - 5(1 - G(7.))3 
1 - (1 - G { r ) ) '  

-4(1 -G(7'))--^3(2-G(r))i-G'(r)! 

^(r) = ( 
1 - (1 - G(r))'^ 

-(,^' - 2)(1 -  ̂ (r))^-'^ ^ ... _ 4(1 _ (?(r))2 ^ 3(2 _ G(r)): ^ G(r)\ 

Therefore, we can conclude that 

for all cases, since G ' ( r )  < 0. 0 < G ( r )  < 1. and 1 — (1 — G ( r ) ) ^  >  0. and 

(1 - G(r)):(6 - 1)(1 - G(r))^-3 ^ _ 2)(1 _ G(7-))^-4 _ ...  ̂ 4(1 - G(r))2 _ 

3(2 - G(r))! -  G(r) > 0. for all t. 

- F \ r )  - G ' { r )  
F { r ) p [ r )  -  G { r ) p { r ) '  

Therefore. . and r g  < r o  for all k .  

We now show that a saddle point coordinate strategy for the fighter is to fire 

at range rg. and a saddle point coordinate strategy for the bomber is to use firing 

intensity 

J G(7H7) 
0 for r £; r^. 

We verify that K y r g . r )  = K [ r g . T ' ^ )  as follows: 

K { r g . T )  -  K { T g , r ° )  

= F { r g ) e -  4" _ F ^ r g ) e - ^ ^ 9  
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=  F ( r g )  -  F ( r g )  = 0. 

It remains to show that 

K{Tg,T°) > for c < r < Vg. 

To this end note that 

= F { r g ) e -  4' - F i r ) , -  J r "  

=  F ( r g )  ~  F ( r ) e '  j r '  - s W « )  

= F,.,| -

m- ri /1 m  
G { r )  

^  1 - ( 1 - G ( r g ) ) " ^  _  1 - ( 1 - G ( r ) ) ^  

G { r g )  G { T )  

1 _ 1 _ 2;̂  

since 0 < ^ < jf < 1. and with z set equal either to x  or to y .  

I  -  z  

Real Relationship between F { T )  and G [ T )  

When m is generalized to an arbitrary real number a > 1. the saddle point of 

the previous section still obtains, and the analysis only changes in the demonstration 

of the fact that 

A'(rg,T^)> 
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To this end note that 

AVrg.T'^)-

= T^(6)p(5)(f6 

= f (rg) - F(r)e-

=  f ( r g ) - f ( r ) e  

=  F [ r g )  -  F i r ) ^ " " '  

a :  - 1  / I  r u  ̂ w d -  )  
G ( r )  

C%r) 

=  : i - ( l - G ' ( r g ) ) ' ' ; - : l - ( l - G ( r ) )  

^  l - ( l - g ( r g ) ) ^  _  1 - ( 1 - G ( r ) r  

G(rg) ^(r) 

= ^ ~ > 0 
I - Y  I - X  -

where 0 < r < y < 1, and G { r g )  <  G ( r ) .  for r  <  r g .  

We now verify that ^) is greater than zero for x  in the interval (0 < z < 1): 

d  I  —  { \  —  x ° - )  

d x  1 - j; (1 - z) (1 _ a.)2 

- a x  -r az'^ - 1 - X® 

*2 ,1 ^ ^((a — 1),T — a)_ 
( 1 - z )  

When z = 0, and a  is any real number larger than one 

For 0 < X < 1, we want to show that 

i - fe ï»"'  
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by proving that 1 —^ ( az — .r — a ) > 0. But 

1 — J® Vax - .T - a) >0 •:=• 

Va.r — .r — a) > — 1 •= 

1 
a x  —  X  —  a  >  

zO-l 

C 2 ( . r )  =  ( l — a ) . T  —  a  <  z - - } ( x )  = r. (5.1) 
j,a —i 

The inequality of Equation 5.1 which can be shown in Figure 5.1. is satisfied for all 

a • 1. XoT'- that rii-r = 1) = 1 and zgtz = 1) = 1, and the slope of is (1 — a) 

in the inter'»'?! 0 <: r < 1. and that of j is ( 1 — a) at .r = 1. and the slope of 

is i ) larger than that of Z]_(.r) for 0 < x < 1. 

Therefore. K { r g . r ' ^ )  > A'(r.T^). and r g  and are the saddle point coordinate 

strategies for the fighter and bomber for a late duel start model with special structure. 

Extended Relationship between F ( r ]  and G { r )  

If there is a non-increasing difierentiable positive function Gir) < 1 such that 

Vc G(r)p(r) 

and 

- F ( r )  ^  G ( r )  

F { r g )  G { r g )  

over c  • _  r  <  r g .  then the saddle point coordinate strategies for the fighter and 

bomber are the same as those of the previous section. Once again, the analysis 

differs only in the manner in which 

A'(rg.T^) > 
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. A  -1 

a  

1 

o 

Figure 5.1: cjl.r) < 
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is to be verified. 

To this end note that 

AlrgiT*)-Alr.T*) 

= f T^(3)X6) (fs 

= f(rg) -
- i f  

,C%rg) 
F i r s ) - F ( r ) - ^  

(?(r) f(r) ^ Q 

G(rg) fXrg) 

F ( r )  G i r )  ^  f  ^  ^  
since -pTT r < 777 r bv assumption lor c < r < r n -

F i r g )  -  G { r g )  -  ^  -  -  y  

Therefore. K(rg.T'^) > A'(r. r"). and rg and are the saddle point coordinate 

strategies for the fighter and bomber. 
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CHAPTER 6. FIGHTER WITH MULTIPLE MISSILES 

Introductory Remarks 

This chapter derives a saddle point coordinate strategy for the extension of the 

duel to the case where the fighter has multiple identical missiles. Let us suppose 

that a fighter has multiple missiles to attack a bomber instead of one missile in 

the classical fighter-bomber duel problem. Let us assume that the fighter can launch 

several missiles at the same time, or at the same lange, or release one missile at range 

and then one missile at range r2 and so on. Two extreme cases here would be that 

in which there is simultaneously launch: in other words, the case of one super-missile, 

and the case in which distinct ranges t\-T2- rg, —-r# are involved. We assume that 

the duel starts at the range TQ determined by the single-missile lethality function 

F{r). which then implies that the ranges r2, - - , are less than or equal to the 

range TQ. The other conditions are the same as those of the classical fighter-bomber 

duel problem. 

For this extension of the classical fighter-bomber duel, define the following vari­

ables. 

I: A fighter with multiple missiles as Player one 

II: A bomber as Player two, capable of continuous fire 

r,: Range for the fighter to launch the z-th missile. 
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F(r^-): Lethality function for the fighter to fire at range r^. 
—  T { S ) P [ S ]  d s  

e  1 : Probability that the fighter survives from range T Q  to range 

^1-

e  "^2 ^ ) . Probability that the fighter survives from range to range 

ro. 

K { { r Y . r 2 - •  •  •  • r n ) - ~ ) -  Payoff in which the bomber uses firing intensity r(r ) and 

the fighter fires at ranges r-^.r-y- - • • - r-n-

Fighter With 2 Missiles 

Let us suppose that r^. and are the ranges for the fighter to lire the first and 

second missiles respectively. 

A saddle point coordinate strategy for the fighter is to fire the two missiles at 

range ro-

A saddle point coordinate strategy for the bomber is 

[  - F ' {  
F ( r ) p  

I 0 for r > ro-

To show this, note first that the objective function now is as follows: 

where we have assumed that the missile launch outcomes are statistically indepen­

dent of each other. The total missile launch outcomes for the fighter which fires 

simultaneously two missiles at any range r is defined as follows: 

T(r) = !-(!- = 2F(r) -
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When both players adopt the saddle point coordinate strategies for each one. 

probability that the bomber is killed is computed as 

= F(ro) - (1 -

or. equivalently, 

A'((ro,ro),T^) = 

= T { r o )  =  2 F { r o )  -  { F { r o ) ) ^ .  

Now we prove that K({ro.ro).~) = K{(ro.ro). . 

K i i r o . r o ) . r )  -  A'((ro,ro),T°) 

=  T i r o )  - T ( r o )  -  0. 

Then we show that A'((ro, ro).r^) > A'((r]_, r2 ). r' ') : 

K i i r o . r o ) . r ° )  -  A'((r2,r2),T^) 

-(1 - F(ri))Fir.2)e 

=  T i r o )  -  [ F { r i ) e  ^  ^  

-(1 - F{ri))Fir2)e 2 ^(-s) i 
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= T(ro) - 'F{ri)^J - (1 - f 
f(n) ' 

= r(ro) - F(ro)('2 - F(7-;^ )) 

=  F ( r o ) i 2  -  F ( r o ) )  -  F ( r o ) { 2  - F ( r i ) )  >  0. 

since F { r o )  < F(rj ). and (2 - F { r o ) )  > (2 -

Therefore. A'((ro, ro). r") satisfies the required minimum and maximum condi­

tions. and {ro-To) and are the saddle point coordinate strategies for extension of 

the duel in which the fighter has two missiles. 

Fighter With n  Missiles 

Suppose that a fighter has n  number of missiles to attack a bomber, and the 

fighter can launch the missiles at the same time, at some range r. or can launch the 

missiles at n different ranges. Suppose once again that the duel begins at range ro-

determined by the lethality function F{r) of a single missile. 

The objective function is as follows: 

(1 - F(r^)){l - F(r2))---(1 - F(r„_2)) 

)e~ •' '"-l ' - (1 - F(ri )K1 - F(r,)). • • 

where we have also assumed that the missile launch outcomes are statistically inde­

pendent of each other for this case as in the previous section. 
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A saddle point coordinate strategy for the fighter is to fire the n  missiles at range 

T o -

A saddle point coordinate strategy for the bomber is 

I 0 for r > To-

When the fighter has two missiles (n=2). we proved in the previous section that 

[TO-^O) and are the saddle point coordinate strategies. Now we will show the 

solution specified in the section is true for n >2 and look at n missile case. The total 

missile launch outcomes for the fighter which fires n number of identical missiles at 

the same range r is defined as 

When both players adopt the saddle point coordinate strategies for each one, the 

probability that the bomber is killed is computed as 

= T { t o )  =  I  -  [ l  -  F ( r o ) ) ^ .  

We show that A'((rg,,rg. - - -, rg). r) = K [ { r o . r o . ... . r o ) , r ' ^ )  when the fighter has n  

missiles. 

A'((ro,ro,--.,ro),r) - A:((ro,ro,..-,ro),T°) 

= T{ro) - T{ro) - 0. 

Then we prove that A'((ro, r^, - - -, rg), T^) > À'((r2^. r2, • • •. ), r*-'). Xote that 

F{ro) < F{ri) < F(r2) < < F(rn) because ro > ri > ro > • • • > r;, j c. 



www.manaraa.com

48 

We start out looking at the case n  = 3. 

When the fighter has three missiles. 

= Z F { r o )  —  Z F i r o ) "  — F { r o ) ^  •  

And also. 

K i i r , . r , . r , U O )  = f A" 

-|1 f|r,))f|r;|rA3 ' <^"''"1''^ 

-(l-f(n))(l-f(r,|)F(r3)^i 

= F(ro):l - (1 - /'(rj)) - (1 - ))(1 - F(r2)): 

= F{ro)[Z - '2F{ri) - F'yro) - )F(r2 )\ 

The relationship to be checked is that A'((ro,ro,ro). T°) > À'((r2. r^, rg). T^). 

A'((ro,ro,ro),T°) - AKr^.rg^rg).-^) 

= 3f (ro) - 3f (r^)^ ^ - ;^(ro)l3 - 2f(ri ) -  ̂ (rg) 

-F(ri)F(r2)ii 

=  Z F { r o )  -  F { r o ) [ - Z F { r o )  -  F ( r o ) " ]  

- l Z F { r o )  - F { r o ) [ - 2 F { r i )  - F { r 2 )  - (ro);: 

= 3F(ro) - f (ro)i(2 - - F(ro)) - 2! 



www.manaraa.com

m 

49 

- : 3 f ( r o )  -  F { r o ) [ ( ' 2  -  F { r 2 ) ) i l  -  F -  2 ] ]  

-:F(ro):(2 - - F(ri)) ̂  Ij > 0, 

s ince  F( r ]^ ) .  )  >  F (T O ) .  

Therefore. K{(ro.ro.ro).r°) > 

When n=4, K((To.ro~ro.To).T°) and A'((r]^. r2. rg. ). r'^) can be expressed 

a manner simplifying comparison. 

To begin with. 

K [ ( r o . r o . r o , T o ) . r ° )  

= 4 : F { r o )  -  F { r o ]  

*: (2  -  F(ro) ) ( l  -  f (ro ) ) ( l  -  f (ro ) )  (2  -  f (ro ) )  -  4]  

= F [ r o )  "  1(2  — F ( ro ) ) ( l  — F ( ro ) ) ( l  — F { r o ) )  — (2  — F { r o ) ) . .  

And also. 

K ( { r i . r 2 . r ' ^ , r ^ ) , T ° )  

= 4F(ro) — F(ro) 

-  F(rg) ) ( l  -  F(7-2 ) ) (1  -  -  (2  -  F(r^) )  -  4;  

= F(ro) - i(2 - F(r3))(l - F(r2))(l - F(r]^)) - (2 -

It is now clear that corresponding terms can be distinguished in the above two ex­

pressions, with the terms of the second expression no greater than the corresponding 

ones in the first expression. 

When n=5, K^{{ro-ro.ro,ro,ro),T°) and K{{r-^.r-2.r^,r^,r^),T'^) can be ex­
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pressed as follows: 

A'((ro.ro,ro,ro,ro),-°) 

= ^ F { T o ) ~ F { r o )  

. ; (2  -  F(ro)Xl  -  F(7 .o ) )3  ̂  (2  -  f (ro ) ) ( l  -  F(ro) )  -  4]  

= f(ro) . :(2 - f(ro)Xl - - (2 - f(ro)Kl - Ffro)) - 1:. 

And 

A'((r^,r2.7'g,r^.r^).T°) 

= ô F { T o ) - F { r o )  

«;(2 - F{r^)){ l  -  F{r^))( l  -  F(r.2)) i l  -

= F(ro)  .  :(2  -  -  F(rg) ) ( l  -  F(r2) ) ( l  -  ))  

-(2 - F(r2))(l - - 1Î. 

When n = 6. A'( ( tq. rc>. ro, ro), r' ') and A'((r2,r2,rg, rg).T°) can be 

expressed as follows: 

A'((ro,ro.ro,ro,ro. ro),r^) 

= 6 F { r o ) - F ( r o )  

..;(2 - F(ro))(l - - (2 - - F(ro))^ 

- ( 2  -  F{ro)) -  6 -

=  f  ( r o )  . ;(2 - f(ro))(l - f (ro))^ f (2 - F(ro))(l -

~ ( 2  —  F{ro)) l .  
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And 

A'((ri,r2,rg.r^,rg,rg),r°) 

= 6F(ro) - F ( r o )  

«:(2 - - f(rg))(l - f(r2))(l - -Ffr^)) 

- ( 2  -  F ( r g ) ) ( l  -  F ( r 2 ) ) ( l  -  -  ( 2  -  F ( r i ) )  -  G j  

=  F ( r o )  -  ̂ ( 2  -  F ( r 5 ) ) ( l  -  -  F ( r g ) ) ( l  -  F ( r 2  )  ) (  1  -  i ^ (  )  )  

-(2 - f(rg))(l - f(r2))(l - - (2 -

When n is arbitrary. K{{ro.ro~ - • • .ro).T°) and K((ri.r2. • • • .rn)-~°) can be ex­

pressed as follows: 

A'((ro.ro,"-,ro),r°) 

And also. 

r2. • • •  . r n  ),T°) 

(1 - F(r]^))(l - F(r2)) • •• (1 - F(r^_i)) 

These two expressions do not provide an opportunity for straightforward com­

pari s o n .  H o w e v e r ,  e q u i v a l e n t  e x p r e s s i o n s ,  t h a t  h a p p e n  t o  p e r t a i n  r e s p e c t i v e l y  t o  n  

odd and n even, do provide such an opportunity. 
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Thus, when n  is odd. K ( { r o . r o .  • • • . r o ) . r ° )  and rg. - - - .r^ can be 

expressed as 

= f(ro)i(2 - F(ro))(l - ^ (2 - FW))(1 -

(2 _ - F(ro))'^ - (2 - F(ro))(l - ^ 1\ 

And also. 

K ' i i r i . r o .  -  •  •  . r n ) ~ r ' ^ )  

=  F { r o ) [ { 2  -  F i r ^ _ i ) ) { l  -  F(r„_2))---(1 - f(r2))(l -

-(2 - F(r„_3 ))(l - J'(r„_4)) •••(1 - F(r2))(l - F(r|)) 

-(2 - F { r ^ ) ) { l  -  F ( r ^ ) ) { l  -  F(r2))(l - f )) - (2 - Ffrg)) 

( 1  -  F ( r | ) )  -  1 ] ,  

and term-by-term comparison is possible, leading to K({rQ.ro. • • • . 'ro).r'^) greater 

t h a n  o r  e q u a l  t o  r ^ .  .  ) .  f o r  n  o d d .  s i n c e  F { r o )  <  F ( r ^ ) .  

When n  is even. A'( (r^, r^. - - -. rg), and A'((r]^, r2, • • •. r*?? can be ex­

pressed as follows: 

A'((ro,rc,.---,ro),T°) 

= f(ro):(2 - f(ro)Xl - f (2 - f(ro)Xl -

( 2  _  F ( r o ) ) ( l  -  f ( r o ) ) 4  ^  ( 2  -  -  f ( r o ) ) -

- ( 2  -  F ( r o ) ) ] .  

And also. 

K { { r i . r 2 .  -  . r T i ) - r  ) 
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= -P(ro)[(2 - F(r„_;^))(l - F(r„_2)) • • • (1 -

• • • (1 - F(r.2))(l - F(r]^)) 

-(2 - - ffrgjXl -

^(2 - F(r3))(l - f(r2))(l - f(ri)) - (2 -

Again. A'( ( r^. ro, •••. ro ). r®) is seen to be no less than K d r ^.To. - • • . r n ).T'^) for n  

even, since F{ro) < f(r^). 

Therefore. K{{ro.ro. - - -. is greater than, equal to rg. - - -, ). t") 

for all cases, so that (r^. r^. • • •. r^) and are the saddle point coordinate strategies 

for the fighter and bomber for the duel in which the fighter has multiple identical 

missiles. 
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CHAPTER 7. ALTERNATIVE PAYOFF FUNCTIONS 

Introductory Remarks 

We have in the preceding chapters obtained saddle point coordinate strategies 

for a bomber-perspective payoff. We shall now introduce a dual with, an alternative, 

fighter-perspective, payoff function, and also a duel with a payoff function which 

combines the viewpoints of the bomber and fighter. We will derive saddle point 

coordinate strategies for the fighter and bomber for these alternative payoff functions. 

The previous objective function A/(a-. r) is the probability that the bomber is killed. 

However, in this chapter, the objective function is changed first to the payoff function 

Mj(cr, r), which is the probability that the fighter survives, and then is changed to 

Mo(cr.T) equal to ( 1 — 9)M{cr,T) — T), 0 < 0 < 1. We assume that the fighter 

is not vulnerable after releasing a missile. In the case of the duel with payoff function 

Mj[cr,T), the duel is assumed to start at the range TQ defined in terms of F{r) and 

^(7- ) as in the previous chapters. In the case of the duel with payoff function r ). 

the duel is assumed to start at some range R .  

Fighter-Perspective Payoff 

We assume that an initial bomber firing burst is not allowed in this section. Let 

us define r) as the probability that the fighter survives, the duel when the 
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strategies c r  and r  are used by the two opponents. 

Then 

T) = e- /r 

A saddle point coordinate strategy for the fighter is 

,0 for c < r < 7-0, 

1 for r = ro-

A saddle point coordinate strategy for the bomber is 

0 for r = T Q . 

We verify that as follows: 

- T(3)p(5) L ' 
=  f "  r  ^ ( 4 P ( « )  à s  _  r  -  J r °  r ' = { s ] p { s ) d s  

J c  J  c  
r o  R .  r o  

=  y  d a  { r) — J da (r) — 0. 

Notice that Mj(a°.T'^) = Mj{a°.T). which means that when the fighter uses the 

saddle point coordinate strategy {a°) then the payoff of the duel will not be changed 

no matter which strategy the bomber uses, because the fighter will leave from the 

area after firing its missile at range tq. 

It remains to show that 
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To this end note that 

= T" e- - y'"'' e- T'' ' W4 

= T'' T()(6)p( 5 )  g -  j ; r °  T ^ ( 6 )p(6) (f6 

f(ro) '  

F ( r )  

s™« T(^ - """' f" TIT^ '^^'(''1 £ Ic° ' '"I"'! = 1-

Therefore. M j { c r ' ^ , r ° )  > M j { a . T ' ^ ) .  and a °  and t ° are the saddle point coordi­

nate strategies for the fighter and bomber for the fighter-perspective payoff. 

Hybrid Payoff 

In this section we develop saddle point coordinate strategies for the hybrid payoff 

function A/^(cr. r). We assume that the duel starts at some range R which is specified 

below. Xow 

.Mfficr.r) = ffMjlcr.r) ^ (1 — 9)M(a, T }  

' - R  _ r A w  

where F ^ { r )  —  0  —  ((1 — 0 ) F { r ) ) .  
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The range rQ{0). assumed to be finite for all 0 < 1. is given by 

Now we check that rQ{0) increases with 6 between 0 and 1. from ro{0) = at i9 = 0 

to ro{0) = — oc at (9 = 1. 

We have 

-  ( •  

F { r ] p [ r )  '  

1 
= ( 

p(r )  -  F (r )  

1 

p [ r ) ' -  F { r )  9  -  { I  -  O ) F ( T ) -

0. 
1 , , - F ' { r ]  F ' i r  

X r )  -  F ( r )  

since F'[r] < 0, and (]~^) > 0 for 0 < ^ < 1. 

Hence, the range ro{9) is increasing in B, since ro{0) is defined by 

r v o i e )  _ ( i  

J c  [ 0  -  ( I  -  d ) F { r ) ] p { r )  

Also, since in the limit, a .s 6  — 1, 

- ( 1 - 0 ) F ' { T )  

the range ro(<9) increases up to infinity as 0 increases from 0 to 1. 

When the duel starts at range R  >  R O ( 0 )  for 0 < ^ < 1. saddle point coordinate 

strategies are given as follows: 

A saddle point coordinate strategy for the fighter is 

P { T O ( & ) )  
for c < r < ro(9). 

1 for r = ro(^). 
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A saddle point coordinate strategy for the bomber is 

T ^ ( r ) :  
for c < 

F ^ { r ) p { r )  

0 ioT r — ro{0). 

This is verified in exactly the same way as in the section on verification of candidate 

bomber strategy in Chapter 3. 

When the duel starts at range R  <  t o [ 6 )  for 0 < ^ < 1. and an initial bomber 

firing burst is allowed, the payoff function for this model is as follows: 

where a = T ( r )  d r .  

Then saddle point coordinate strategies of the duel are given as follows: 

A saddle point coordinate strategy for the fighter is 

I 1 for r  =  R .  

A saddle point coordinate strategy for the bomber is 

A  f  f o r c < r < ; Z .  
r ^ { r )  :  j  F ^ { r ) p ( r )  

I G o  for r  =  R .  

This is also verified in the same way as in the section on late duel start with 

initial burst possibility for the bomber in Chapter 3. 

As 6 increases from 0 to 1. the range ro{0) increases, and the initial bomber 

firing burst is bigger and the last firing probability is smaller and the 

initial firing probability (1 - ( )) is larger for the fighter. 
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When 0 = 1. and the duel starts at range R < 1 ) = —oc. and an initial 

bomber firing burst is allowed. MQ{O-.T) is changed to which is 

_ p R - i  
Mlb{a . T )  =  j  e 

ivhere a is defined by 
f-roc 

a = r(r) dr. 
J R  

Then saddle point coordinate strategies of the duel are given as follows: 

A saddle point coordinate strategy for the fighter is 

1 I 0 for c  <  r  <  R .  

I 1 for r = iî. 

A saddle point coordinate strategy for the bomber is 

0 ÎOT c < r < R, 
T ^ ( r )  :  

.4 for r  =  R .  

We verify that M , T )  >  M . R ^ ) .  

Ic  '  
' R  r R ,  

- p { R ) a  _  - p { R ) A  e 

-p(;z).4 =  - { p { R ) a  -  p { R ) A ) e  

since a = J  r { r )  d r  <  A .  
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We now show that ). 

' R  r R ,  

since d a ^ { r )  = 1. 

And also. 

' c  

-P(;Z).4 

1 
M l b i o - . r  ) =  I  e  

= e 

e 

O p ( s ) d s - p { R ) A  ^  J  

c 

Hence, 3/j^((j^.r^ ) > 3/jj(cr.r^). and and are the saddle point coordinate 

strategies for the fighter and bomber for the hybrid payoff function. 
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CHAPTER 8. NON-ZERO SUM VERSION 

Introductory Remarks 

This chapter deals with the equilibrium strategies for the non-zero sum version 

of the classical fighter-bomber duel. Suppose that the duel is a non-zero sum game 

under the same conditions as those of the fighter-perspective payoff problem, which 

means that it is no longer true that the payoff to the fighter is equal to the negative 

value of the payoff to the bomber for all outcomes. 

It is also true that some of the results for zero-sum games no longer hold, namely; 

(a) a maximin point is not necessarily an equihbrium pair or vice versa, 

(b) all equilibrium pairs do not have the same payoffs, and 

(c) there is no obvious solution concept for the game :43i. 

Here, an equilibrium point is defined in the sense of Nash -34;: That is. 

is an equilibrium point if the simultaneous choice is made, neither player will have 

any cause for changing his mind; that is. 

> Mjia-.r"),  Vcr, 

>  M j j ( a ' , r ) ,  Vr.  

Also a maximin point is defined to be a strategy pair such that (r" is a 

maximin strategy for the fighter and r" is a maximin strategy for the bomber; that 
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IS.  

m m  M r i c r "  . T )  = max min J/j(cr. r). 

and 

min A/7-7-(c7-. r"") = max min -r). 

However, with respect to (c). if. in this non-zero sum case, we are able to find a 

are able to recommend, and/or anticipate the use of. this pair with almost as much 

confidence as we can recommend saddle point coordinate strategies in the zero-sum 

case. 

Let us assume that the duel starts at range V Q  for this chapter. The objective 

functions for the players are as follows: 

The fighter wishes to maximize the probability of the fighter's own sur­

vival. And, similarly, the bomber wants to maximize the probability M j j ( c r . r )  of 

the bomber's own survival. We now determine the equilibrium point strategies for 

both players. 

strategy pair (c", r") that is both an equilibrium point and a maximin point, then we 

Equilibrium Point Analysis 

With Mj{cr.r)  and Mjj{cr . T )  defined as above, define a" and r"  as: 

0 for c < r < ro, 

1 for r = rg. 
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for c < r < r,. 
F [ r ) j p { r )  

0 ioi r = T Q -

Then the pair of strategies [cr'^.r") form an equilibrium point for the bi-matrix game; 

this is verified as follows: 

We verify that .r"} > 

= 1. 

And 

.l/;(,r.r-) = j'° e ' Sr" dcr { r )  
i c  

F(ro) 

I c  F { r )  
d a { r )  <  1. 

Therefore. > Msince < 1 for r < TQ . and also 

Now we show that Mjjia^'.r'^) > Mjjia^.r). 

M j i W ' . t ' )  =  1 -  [ °  F i r ) e - ! r ° ^ ' M P M ' ^ ' à c r - { r )  

- 1 - F { r o ) .  

And also. 

=  1 -  r °  F i r ) e - f r ' ' ^ M P l s ) d 3 j ^ . ^ ^ ^  
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= 1 - F { r o ) .  

Therefore. M j j i a "  . r " )  >  M j j [ a ^ . r ) .  and the pair of strategies [ a "  . r " )  is an equi­

librium point for the non-zero sum game. 

Note that a* and r" are saddle point coordinate strategies for the duel with 

objective function equal to the bomber" survival: namely 

as shown above, and also 

< M j j i c r . r " ) .  

which is shown as follows: 

. T " )  -  M J J I C R . R " )  

= 1 _ _ :1 _ T'' f (rje- Jr " 

=  l - F { r o ) - [ l - J  d a { r ) ]  

=  I  -  F ( r o )  -  [ L  -  F { T O )  j  d c r ( r ) ]  

= -F(ro)-F{ro)  j  (icT(r) = 0. 

since d a ( r )  = 1. 

Since a saddle point coordinate strategy for a maximizing player is also a max-

imin strategy, this shows that is a maximin strategy for the payoff function 

M j j i a . r ) :  

nun 3/jj(c7.-* ) = m^xrmn r). 
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It is equally true that is a maximin strategy for the payoff function M j ( a .  r ) :  

min Mjla-" . T )  = m^x rmn r). 

This follows from the fact, established in the section on fighter-perspective payoff in 

C h a p t e r  7 ,  t h a t  ( < 7 " . - " )  i s  a  s a d d l e  p o i n t  o f  t h e  g a m e  w i t h  p a y o f f  f u n c t i o n  M j ( a . r ) .  

We then, as in the case of r". use the fact that a saddle point coordinate strategy 

for a maximizing player is also a maximin strategy. 

Therefore, all told, the equilibrium pair of strategies is also a maximin 

pair of the strategies for the bi-matrix game. 
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CHAPTER 9. COOPERATIVE VERSION 

Introductory Remarks 

We consider a sales competition between two businessmen, whom we shall call 

Mr. Little (fighter) and Mr. Big (bomber), essentially in Karlin's sales competition 

described in Chapter 2. except that we do not include Karlin's upper bound on Mr. 

Big's sales efforts. The new feature is that cooperation between the two players is 

now allowed, and that binding contracts can be made. 

We assume that the strategies available to the two players are the strategies a and 

T  o f  C h a p t e r  8 .  a n d  t h a t  n o  o u t c o m e  p a i r s  o t h e r  t h a n  t h e  p a i r s  { M J{cr.r) .  M J J { ( T . T ) )  

of Chapter 8 are possible. The feature that we introduce is that pairs [cr.r) can be 

chosen in collaboration, thus eliminating the non-cooperative feature of Chapter 8. 

In keeping with Nash 351, we adopt as a solution any pair (o-''.r'') that maxi­

mizes the hyperbolic function 

{ M j [ a . r )  — max min 3/j((T. r);(.Vjj(o-. r) - m & x m i n  M j j ( a - . r ) ) .  

with both factors non-negative. As elaborated on in Akbar this solution concept 

amounts to postulating that, of two possible points {Mj[cr.r), in the 

feasible set 5. that point will be preferred by the two parties that is preferred by the 

player with the higher relative stake in the outcome. We note that, as is typical of 
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cooperative solution concepts, the emphasis now is not so much on what the parties 

will do. but rather on what the parties will obtain. 

The objective functions for each player, as in the previous chapter, are as follows: 

M l l i a . r )  =  1 -  r °  

Bargaining Solution 

We assume that the sales competition begins at the "range" V Q . and also, as in 

the previous chapter, that the customer susceptibility functions are non-decreasing 

in time, which, as in Chapter 8. means that F{r) and p{r) are non-increasing as the 

range increases. 

We now show that the guarantee point 

is the unique bargaining solution. 

This we shall do by showing 1. G 5, 2. A" < A^ = 1. and 3. Y < Y* 

when A = .A% 

1. To begin with, we show that (A'",!'") G 5. 

Let cr" and be as defined in Chapters 7 and 8. It was shown in Chapter 7 

that is a saddle point of the game, with payoff function MJ(IT.T) from Mr. 

Little's perspective, which implies that 

A"" = m^xmin M 
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Again, it was shown in Chapter 8 that also is a saddle point of the game, 

with payoff function M TJ{(T,T) from Mr. Big's perspective, and this implies that 

Y = m^xrrnn Mj-j{A.T) = , 

All told. then. 

( A ' \ y ' ' ) =  

which implies that (A"".!"") G 5. 

2. We show next that, for all point (A'.}") in the feasible set 5. A < A" = 1. 

We show this by showing that 

A = = A" = 1. 

To begin with. 

A'*" = maxmin .'V/7-( i t . r) 
a  T  

.  r o  _  r o  
m^xmin / e T(6)p(s) 

J c  
f r o  

= max I e 
a 

= 1. 

And 

A' = 

I c  '  

since < i. 
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3. Finally we show that Y  < V  when X  =  A'*. 

Consider any (A", V) with A" = X" = 1. Then any generating that (A'. 1") 

must be such that 

which implies that that is such that a assigns unit weight to 

f r o  
{r : J  T { s ) p { s )  d s  =  0}. 

Then. 

=  J  F { r ] d < 7 ( r )  >  F { r o ) .  

Hence, when A' = A''* = 1, 

y  <  i - F ( r o )  =  y \  

That X < X'' and Y < Y" for X = .Y' shows that there are no points 

of 5 in the close quadrant (A' > A"*.}' > }'*). other than (.V. y ) itself, so 

that the maximum of the hyperbolic function over the feasible set 5 is the value 

zero achieved by (A'^.V''). That the guarantee point (A"^.}'") itself is the unique 

bargaining solution underlines the essential competitiveness of the game in question, 

which prevents the opponents' improving of their prospects through collaboration, 

beyond what they can secure for themselves without cooperation. 
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CHAPTER 10. CONCLUSION 

Summary 

This research analyzed saddle point coordinate strategies for the fighter-bomber 

duel in several different situations. At first, the Weiss-Gillman and Karlin models of 

the classical fighter-bomber duel are examined, with respect to the possible extension 

of the class of saddle point coordinate strategies for the fighter. It is noted that the 

solutions for the Weiss-Gillman can be obtained when the duel starts before a certain 

natural range rg and after tq. and that a solution for the Karlin models can be 

obtained when the duel starts before TQ if an altered restriction is met. 

A late duel start model is discussed with special structure, for which an initial 

bomber firing burst is not allowed. 

.A saddle point coordinate strategy for the extension of the duel in which the 

fighter has multiple identical missiles is found. 

Saddle point coordinate strategies for the fighter and bomber are discussed for a 

fighter-perspective payoff. Saddle point coordinate strategies are found for a certain 

hybrid payoff function consisting of a linear combination of bomber- and fighter-

perspective payoff functions. The behaviorally plausible pattern emerges that, as the 

value of the fighter relative to the bomber is made to increase, discrete probabihty 

mass in the fighter's optimal strategy shifts from latest-possible firing to earliest-
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possible firing. 

For the non-zero sum version of the fighter-bomber duel, a pair of strategies 

is found to be both an equilibrium point and a maximin point, making 

{A" .T") an especially plausible solution construct. 

A cooperative version of the duel (in commercial competition form) is studied. 

It is found that the duel, as originally perceived with no cooperation in mind, is 

inherently so competitive that the players can be expected to gain nothing from 

cooperation, and to fall back on payoffs that they can guarantee for and by themselves. 

Recommendations for Further Study 

In Chapter 3. under the assumption that initial burst possibility for the bomber 

is allowed, a saddle point coordinate strategy for the fighter and bomber is found. 

Saddle points of the duel also should be studied for the case where a burst is possible 

at any time. 

In Chapter 6. the saddle point coordinate strategies for the fighter and bomber 

are applied to the duel in which the fighter has several identical missiles. A possible 

extension of this research is to study the case of several non-identical missiles. 
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